Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498222

RESUMO

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Assuntos
Cisplatino , Neoplasias , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Microtúbulos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina Tiolesterase
2.
Biochem Biophys Res Commun ; 682: 27-38, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37801987

RESUMO

The solute carrier family 35 F2 (SLC35F2) belongs to membrane-bound carrier proteins that are associated with multiple cancers. The main factor that determines cancer progression is the expression level of SLC35F2. Thus, identifying the E3 ligase that controls SLC35F2 protein abundance in cancer cells is critical. Here, we identified ßTrCP1 interacting with and reducing the SLC35F2 protein level. ßTrCP1 signals SLC35F2 protein ubiquitination and reduces SLC35F2 protein half-life. The mRNA expression pattern between ßTrCP1 and SLC35F2 across a panel of cancer cell lines showed a negative correlation. Additionally, the depletion of ßTrCP1 accumulated SLC35F2 protein and promoted SLC35F2-mediated cell growth, migration, invasion, and colony formation ability in HeLa cells. Overall, we demonstrate that ßTrCP1 acts as a tumor suppressor by controlling SLC35F2 protein abundance in cancer cells. The depletion of ßTrCP1 promotes SLC35F2-mediated carcinogenesis. Thus, we envision that ßTrCP1 may be a potential target for cancer therapeutics.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Células HeLa , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Neoplasias/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1867(11): 130454, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689217

RESUMO

BACKGROUND: The solute carrier family 35 F2 (SLC35F2), belongs to membrane-bound carrier proteins that control various physiological functions and are activated in several cancers. However, the molecular mechanism regulating SLC35F2 protein turnover and its implication in cancer progression remains unexplored. Therefore, screening for E3 ligases that promote SLC35F2 protein degradation is essential during cancer progression. METHODS: The immunoprecipitation and Duolink proximity ligation assays (PLA) were used to determine the interaction between APC/CCdh1 and SLC35F2 proteins. A CRISPR/Cas9-mediated knockdown and rescue experiment were used to validate the functional significance of APC/CCdh1 on SLC35F2 protein stabilization. The ubiquitination function of APC/CCdh1 on SLC35F2 protein was validated using in vitro ubiquitination assay and half-life analysis. The role of APC/CCdh1 regulating SLC35F2-mediated tumorigenesis was confirmed by in vitro oncogenic experiments in HeLa cells. RESULTS: Based on the E3 ligase screen and in vitro biochemical experiments, we identified that APC/CCdh1 interacts with and reduces SLC35F2 protein level. APC/CCdh1 promotes SLC35F2 ubiquitination and decreases the half-life of SLC35F2 protein. On the other hand, the CRISPR/Cas9-mediated depletion of APC/CCdh1 increased SLC35F2 protein levels. The mRNA expression analysis revealed a negative correlation between APC/CCdh1 and SLC35F2 across a panel of cancer cell lines tested. Additionally, we demonstrated that depletion in APC/CCdh1 promotes SLC35F2-mediated cell proliferation, colony formation, migration, and invasion in HeLa cells. CONCLUSION: Our study highlights that APC/CCdh1 is a critical regulator of SLC35F2 protein turnover and depletion of APC/CCdh1 promotes SLC35F2-mediated tumorigenesis. Thus, we envision that APC/CCdh1-SLC35F2 axis might be a therapeutic target in cancer.

4.
Mol Biotechnol ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572221

RESUMO

p53 is a tumor suppressor gene activated in response to cellular stressors that inhibits cell cycle progression and induces pro-apoptotic signaling. The protein level of p53 is well balanced by the action of several E3 ligases and deubiquitinating enzymes (DUBs). Several DUBs have been reported to negatively regulate and promote p53 degradation in tumors. In this study, we identified USP19 as a negative regulator of p53 protein level. We demonstrate a direct interaction between USP19 and p53 by pull down assay. The overexpression of USP19 promoted ubiquitination of p53 and reduced its protein half-life. We also demonstrate that CRISPR/Cas9-mediated knockout of USP19 in cervical cancer cells elevates p53 protein levels, resulting in reduced colony formation, cell migration, and cell invasion. Overall, our results indicate that USP19 negatively regulates p53 protein levels in cervical cancer progression.

5.
J Exp Clin Cancer Res ; 42(1): 121, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37170124

RESUMO

BACKGROUND: The repressor element-1 silencing transcription factor (REST), a master transcriptional repressor, is essential for maintenance, self-renewal, and differentiation in neuroblastoma. An elevated expression of REST is associated with impaired neuronal differentiation, which results in aggressive neuroblastoma formation. E3 ligases are known to regulate REST protein abundance through the 26 S proteasomal degradation pathway in neuroblastoma. However, deubiquitinating enzymes (DUBs), which counteract the function of E3 ligase-mediated REST protein degradation and their impact on neuroblastoma tumorigenesis have remained unexplored. METHODS: We employed a CRISPR/Cas9 system to perform a genome-wide knockout of ubiquitin-specific proteases (USPs) and used western blot analysis to screen for DUBs that regulate REST protein abundance. The interaction between USP3 and REST was confirmed by immunoprecipitation and Duolink in situ proximity assays. The deubiquitinating effect of USP3 on REST protein degradation, half-life, and neuronal differentiation was validated by immunoprecipitation, in vitro deubiquitination, protein-turnover, and immunostaining assays. The correlation between USP3 and REST expression was assessed using patient neuroblastoma datasets. The USP3 gene knockout in neuroblastoma cells was performed using CRISPR/Cas9, and the clinical relevance of USP3 regulating REST-mediated neuroblastoma tumorigenesis was confirmed by in vitro and in vivo oncogenic experiments. RESULTS: We identified a deubiquitinase USP3 that interacts with, stabilizes, and increases the half-life of REST protein by counteracting its ubiquitination in neuroblastoma. An in silico analysis showed a correlation between USP3 and REST in multiple neuroblastoma cell lines and identified USP3 as a prognostic marker for overall survival in neuroblastoma patients. Silencing of USP3 led to a decreased self-renewal capacity and promoted retinoic acid-induced differentiation in neuroblastoma. A loss of USP3 led to attenuation of REST-mediated neuroblastoma tumorigenesis in a mouse xenograft model. CONCLUSION: The findings of this study indicate that USP3 is a critical factor that blocks neuronal differentiation, which can lead to neuroblastoma. We envision that targeting USP3 in neuroblastoma tumors might provide an effective therapeutic differentiation strategy for improved survival rates of neuroblastoma patients.


Assuntos
Neuroblastoma , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Sistemas CRISPR-Cas , Neuroblastoma/genética , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
6.
Prog Mol Biol Transl Sci ; 198: 15-24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37225318

RESUMO

In the past few decades, epigenetics has emerged as an important area of study to enable a better understanding of gene expression and its regulation. Due to epigenetics, stable phenotypic changes have been possible without alterations in DNA sequences. Epigenetic changes may occur due to DNA methylation, acetylation, phosphorylation and other such mechanisms which alter the level of gene expression without making any difference to DNA sequences. In this chapter, CRISPR-dCas9 used to bring about epigenome modifications for regulating gene expression towards a therapeutic approaches for treating human diseases have been discussed.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Metilação de DNA , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Acetilação , Metilação de DNA/genética , Epigênese Genética , Epigenômica
7.
Bioeng Transl Med ; 8(2): e10381, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925687

RESUMO

Antibiotic resistance ranks among the top threats to humanity. Due to the frequent use of antibiotics, society is facing a high prevalence of multidrug resistant pathogens, which have managed to evolve mechanisms that help them evade the last line of therapeutics. An alternative to antibiotics could involve the use of bacteriophages (phages), which are the natural predators of bacterial cells. In earlier times, phages were implemented as therapeutic agents for a century but were mainly replaced with antibiotics, and considering the menace of antimicrobial resistance, it might again become of interest due to the increasing threat of antibiotic resistance among pathogens. The current understanding of phage biology and clustered regularly interspaced short palindromic repeats (CRISPR) assisted phage genome engineering techniques have facilitated to generate phage variants with unique therapeutic values. In this review, we briefly explain strategies to engineer bacteriophages. Next, we highlight the literature supporting CRISPR-Cas9-assisted phage engineering for effective and more specific targeting of bacterial pathogens. Lastly, we discuss techniques that either help to increase the fitness, specificity, or lytic ability of bacteriophages to control an infection.

8.
Prog Mol Biol Transl Sci ; 196: 261-270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36813361

RESUMO

Amyloid precursor protein (APP) is a membrane protein expressed in several tissues. The occurrence of APP is predominant in synapses of nerve cells. It acts as a cell surface receptor and plays a vital role as a regulator of synapse formation, iron export and neural plasticity. It is encoded by the APP gene that is regulated by substrate presentation. APP is a precursor protein activated by proteolytic cleavage and thereby generating amyloid beta (Aß) peptides which eventually form amyloid plaques that accumulate in Alzheimer's disease patients' brains. In this chapter, we highlight basic mechanism, structure, expression patterns and cleavage of amyloid plaques, and its diagnosis and potential treatment for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide , Proteínas de Membrana
9.
Bioresour Technol ; 372: 128668, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693507

RESUMO

The ever-increasing global energy demand has led world towards negative repercussions such as depletion of fossil fuels, pollution, global warming and climate change. Designing microbial cell factories for the sustainable production of biofuels is therefore an active area of research. Different yeast cells have been successfully engineered using synthetic biology and metabolic engineering approaches for the production of various biofuels. In the present article, recent advancements in genetic engineering strategies for production of bioalcohols, isoprenoid-based biofuels and biodiesels in different yeast chassis designs are reviewed, along with challenges that must be overcome for efficient and high titre production of biofuels.


Assuntos
Biocombustíveis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Terpenos/metabolismo
10.
Prog Mol Biol Transl Sci ; 194: 333-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36631197

RESUMO

Cardiovascular disease (CVD) is the one of major global health issues with approximately 30% of the mortality reported in the mid-income population. Low-density lipoprotein (LDL) plays a crucial role in development of CVD. High LDL along with others forms a plaque and blocks arteries, resulting in CVD. The present chapter deals with the mechanism of receptor-mediated endocytosis of LDL and its management by drugs such as statins and PCSK9 inhibitors along with dietary supplementation for health improvements.


Assuntos
Doenças Cardiovasculares , Endocitose , Receptores de LDL , Humanos , Doenças Cardiovasculares/metabolismo , LDL-Colesterol/metabolismo , Pró-Proteína Convertase 9 , Receptores de LDL/metabolismo
11.
Cell Biol Toxicol ; 39(5): 2295-2310, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35449354

RESUMO

Phenylalanine hydroxylase (PAH) is the key enzyme in phenylalanine metabolism, deficiency of which is associated with the most common metabolic phenotype of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). A bulk of PKU disease-associated missense mutations in the PAH gene have been studied, and the consequence of each PAH variant vary immensely. Prior research established that PKU-associated variants possess defects in protein folding with reduced cellular stability leading to rapid degradation. However, recent evidence revealed that PAH tetramers exist as a mixture of resting state and activated state whose transition depends upon the phenylalanine concentration and certain PAH variants that fail to modulate the structural equilibrium are associated with PKU disease. Collectively, these findings framed our understanding of the complex genotype-phenotype correlation in PKU. In the current study, we substantiate a link between PAH protein stability and its degradation by the ubiquitin-mediated proteasomal degradation system. Here, we provide an evidence that PAH protein undergoes ubiquitination and proteasomal degradation, which can be reversed by deubiquitinating enzymes (DUBs). We identified USP19 as a novel DUB that regulates PAH protein stability. We found that ectopic expression of USP19 increased PAH protein level, whereas depletion of USP19 promoted PAH protein degradation. Our study indicates that USP19 interacts with PAH and prevents polyubiquitination of PAH subsequently extending the half-life of PAH protein. Finally, the increase in the level of PAH protein by the deubiquitinating activity of USP19 resulted in enhanced metabolic function of PAH. In summary, our study identifies the role of USP19 in regulating PAH protein stability and promotes its metabolic activity. Graphical highlights 1. E3 ligase Cdh1 promotes PAH protein degradation leading to insufficient cellular amount of PAH causing PKU. 2. A balance between E3 ligase and DUB is important to regulate the proteostasis of PAH. 3. USP19 deubiquitinates and stabilizes PAH further protecting it from rapid degradation. 4. USP19 increases the enzymatic activity of PAH, thus maintaining normal Phe levels.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Humanos , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/genética , Ubiquitina-Proteína Ligases/metabolismo , Estabilidade Proteica , Fenilalanina/metabolismo , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo
12.
Prog Mol Biol Transl Sci ; 191(1): 141-151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36270675

RESUMO

Gut microbiota is a highly dense population of different kinds of bacteria residing in the gut which co-evolves with the host. It engages in a number of metabolic and immunological activities. Gut microbiota is associated with maintenance of health, and unbalanced microbiota contributes in the development of several diseases. Alteration of beneficial gut microbiota population triggers gastrointestinal diseases including irritable bowel syndrome, inflammatory bowel disease, celiac disease, colorectal cancer, and many others. Gut microbiota can be affected by multiple factors such as diet, stress, genetic variations. In this chapter, we highlight how gut microbiota plays a key role in pathogenesis of gastrointestinal disease.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Disbiose , Doenças Inflamatórias Intestinais/microbiologia , Gastroenteropatias/complicações
13.
Stem Cell Res Ther ; 13(1): 433, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056418

RESUMO

Pulmonary fibrosis (PF) is a fatal chronic disease characterized by accumulation of extracellular matrix and thickening of the alveolar wall, ultimately leading to respiratory failure. PF is thought to be initiated by the dysfunction and aberrant activation of a variety of cell types in the lung. In particular, several studies have demonstrated that macrophages play a pivotal role in the development and progression of PF through secretion of inflammatory cytokines, growth factors, and chemokines, suggesting that they could be an alternative therapeutic source as well as therapeutic target for PF. In this review, we describe the characteristics, functions, and origins of subsets of macrophages involved in PF and summarize current data on the generation and therapeutic application of macrophages derived from pluripotent stem cells for the treatment of fibrotic diseases. Additionally, we discuss the use of macrophage-derived exosomes to repair fibrotic lung tissue.


Assuntos
Exossomos , Células-Tronco Pluripotentes , Fibrose Pulmonar , Exossomos/metabolismo , Humanos , Pulmão/patologia , Macrófagos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/terapia
14.
Sci Rep ; 12(1): 14243, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987969

RESUMO

Phenylalanine hydroxylase (PAH) is a key enzyme in mammals that maintains the phenylalanine (Phe) concentration at an appropriate physiological level. Some genetic mutations in the PAH gene lead to destabilization of the PAH enzyme, leading to phenylketonuria (PKU). Destabilized PAH variants can have a certain amount of residual enzymatic activity that is sufficient for metabolism of Phe. However, accelerated degradation of those variants can lead to insufficient amounts of cellular PAH protein. The optimal protein level of PAH in cells is regulated by a balancing act between E3 ligases and deubiquitinating enzymes (DUBs). In this work, we analyzed the protein expression and stability of two PKU-linked PAH protein variants, R241C and R243Q, prevalent in the Asian population. We found that the tested PAH variants were highly ubiquitinated and thus targeted for rapid protein degradation. We demonstrated that USP19, a DUB that interacts with both PAH variants, plays a regulatory role by extending their half-lives. The deubiquitinating activity of USP19 prevents protein degradation and increases the abundance of both PAH protein variants. Thus, our study reveals a novel mechanism by which deubiquitinating activity of USP19 extends the residual enzymatic activity of PAH variants.


Assuntos
Enzimas Desubiquitinantes , Endopeptidases , Fenilalanina Hidroxilase , Fenilcetonúrias , Animais , Povo Asiático/genética , Enzimas Desubiquitinantes/genética , Progressão da Doença , Endopeptidases/genética , Humanos , Mamíferos , Mutação , Fenilalanina/genética , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética
15.
Mol Ther ; 30(11): 3414-3429, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918893

RESUMO

Survivin is a component of the chromosomal passenger complex, which includes Aurora B, INCENP, and Borealin, and is required for chromosome segregation and cytokinesis. We performed a genome-wide screen of deubiquitinating enzymes for survivin. For the first time, we report that USP19 has a dual role in the modulation of mitosis and tumorigenesis by regulating survivin expression. Our results found that USP19 stabilizes and interacts with survivin in HCT116 cells. USP19 deubiquitinates survivin protein and extends its half-life. We also found that USP19 functions as a mitotic regulator by controlling the downstream signaling of survivin protein. Targeted genome knockout verified that USP19 depletion leads to several mitotic defects, including cytokinesis failure. In addition, USP19 depletion results in significant enrichment of apoptosis and reduces the growth of tumors in the mouse xenograft. We envision that simultaneous targeting of USP19 and survivin in oncologic drug development would increase therapeutic value and minimize redundancy.


Assuntos
Carcinogênese , Endopeptidases , Survivina , Animais , Humanos , Camundongos , Carcinogênese/genética , Enzimas Desubiquitinantes , Endopeptidases/genética , Survivina/genética , Mitose
16.
Theranostics ; 12(13): 5949-5970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966591

RESUMO

Background: Cisplatin is one of the frontline anticancer agents. However, development of cisplatin-resistance limits the therapeutic efficacy of cisplatin-based treatment. The expression of microtubule-associated serine/threonine kinase 1 (MAST1) is a primary factor driving cisplatin-resistance in cancers by rewiring the MEK pathway. However, the mechanisms responsible for MAST1 regulation in conferring drug resistance is unknown. Methods: We implemented a CRISPR/Cas9-based, genome-wide, dual screening system to identify deubiquitinating enzymes (DUBs) that govern cisplatin resistance and regulate MAST1 protein level. We analyzed K48- and K63-linked polyubiquitination of MAST1 protein and mapped the interacting domain between USP1 and MAST1 by immunoprecipitation assay. The deubiquitinating effect of USP1 on MAST1 protein was validated using rescue experiments, in vitro deubiquitination assay, immunoprecipitation assays, and half-life analysis. Furthermore, USP1-knockout A549 lung cancer cells were generated to validate the deubiquitinating activity of USP1 on MAST1 abundance. The USP1-MAST1 correlation was evaluated using bioinformatics tool and in different human clinical tissues. The potential role of USP1 in regulating MAST1-mediated cisplatin resistance was confirmed using a series of in vitro and in vivo experiments. Finally, the clinical relevance of the USP1-MAST1 axis was validated by application of small-molecule inhibitors in a lung cancer xenograft model in NSG mice. Results: The CRISPR/Cas9-based dual screening system identified USP1 as a novel deubiquitinase that interacts, stabilizes, and extends the half-life of MAST1 by preventing its K48-linked polyubiquitination. The expression analysis across human clinical tissues revealed a positive correlation between USP1 and MAST1. USP1 promotes MAST1-mediated MEK1 activation as an underlying mechanism that contributes to cisplatin-resistance in cancers. Loss of USP1 led to attenuation of MAST1-mediated cisplatin-resistance both in vitro and in vivo. The combined pharmacological inhibition of USP1 and MAST1 using small-molecule inhibitors further abrogated MAST1 level and synergistically enhanced cisplatin efficacy in a mouse xenograft model. Conclusions: Overall, our study highlights the role of USP1 in the development of cisplatin resistance and uncovers the regulatory mechanism of MAST1-mediated cisplatin resistance in cancers. Co-treatment with USP1 and MAST1 inhibitors abrogated tumor growth and synergistically enhanced cisplatin efficacy, suggesting a novel alternative combinatorial therapeutic strategy that could further improve MAST1-based therapy in patients with cisplatin-resistant tumors.


Assuntos
Cisplatino , Neoplasias Pulmonares , Animais , Sistemas CRISPR-Cas/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Detecção Precoce de Câncer , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
17.
Cell Death Differ ; 29(9): 1689-1704, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35273362

RESUMO

Proteins expressed by the paired box gene 9 (PAX9) and Msh Homeobox 1 (MSX1) are intimately involved in tooth development (odontogenesis). The regulation of PAX9 and MSX1 protein turnover by deubiquitinating enzymes (DUBs) plausibly maintain the required levels of PAX9 and MSX1 during odontogenesis. Herein, we used a loss-of-function CRISPR-Cas9-mediated DUB KO library kit to screen for DUBs that regulate PAX9 and MSX1 protein levels. We identify and demonstrate that USP49 interacts with and deubiquitinates PAX9 and MSX1, thereby extending their protein half-lives. On the other hand, the loss of USP49 reduces the levels of PAX9 and MSX1 proteins, which causes transient retardation of odontogenic differentiation in human dental pulp stem cells and delays the differentiation of human pluripotent stem cells into the neural crest cell lineage. USP49 depletion produced several morphological defects during tooth development, such as reduced dentin growth with shrunken enamel space, and abnormal enamel formation including irregular mineralization. In sum, our results suggest that deubiquitination of PAX9 and MSX1 by USP49 stabilizes their protein levels to facilitate successful odontogenesis.


Assuntos
Fator de Transcrição MSX1 , Fator de Transcrição PAX9 , Enzimas Desubiquitinantes/genética , Humanos , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Odontogênese/genética , Fator de Transcrição PAX9/genética , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética
18.
J Control Release ; 343: 703-723, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149141

RESUMO

A single gene mutation can cause a number of human diseases that affect the quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid a disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease. Delivery of CRISPR-components being a pivotal aspect in proving its effectiveness, various proven delivery systems have also been briefly discussed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Mutação , Qualidade de Vida
19.
Biotechnol J ; 17(7): e2100468, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35157790

RESUMO

BACKGROUND: The recent emergence of gene editing using Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated system (Cas) tools and advances in genomics and proteomics has revolutionized drug discovery and personalized medicine. PURPOSE AND SCOPE: The CRISPR-Cas system has enabled gene and cell-based therapies, screening for novel drug targets, a new generation of disease models, elucidation of drug resistance mechanisms, and drug efficacy testing. Here, we summarized recent investigations and strategies involved in cancer-related drug discovery using the CRISPR-Cas system. CONCLUSION: CRISPR-Cas-mediated gene editing has shown great potential in the development of next generation drugs for treatment of Mendelian disorders and various cancer types. In this review, we focused on the impact of the CRISPR-Cas system in drug discovery and its application to biomarker identification and validation, high-end target genes, and breakthrough anticancer cell therapies. We also highlighted the role of CRISPR-Cas in precision disease modeling and functional drug screening.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas/genética , Descoberta de Drogas , Edição de Genes , Genômica , Neoplasias/tratamento farmacológico , Neoplasias/genética
20.
Prog Mol Biol Transl Sci ; 187(1): 335-346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094780

RESUMO

Microfluidics and lab-on-chip are two progressive technologies widely used for drug discovery, screening and delivery. It has been designed in a way to act as a platform for sample preparations, culturing, incubation and screening through multi-channels. These devices require a small amount of reagent in about micro- to nanolitre volume. Microfluidics has the capacity to perform operations in a programmable manner and is easy to fine tune the size, shape and composition of drugs by changing flow rate and precise manipulations. Microfluidics platform comes with the advantage of mixing fluid in droplet reactors. Microfluidics is used in the field of chemistry, biomedical, biology and nanotechnology due to its high-throughput performance in various assays. It is potent enough to be used in microreactors for synthesis of particles and encapsulation of many biological entities for biological and drug delivery applications. Microfluidics therefore has the scope to be uplifted from basic to advanced diagnostic and therapeutic applications.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Humanos , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...